

JBE-003-1161002 Seat No. _____

M. Sc. (Sem. I) (CBCS) Examination

December - 2019

Mathematics: Paper - CMT-1002

(Real Analysis)

Faculty Code: 003

Subject Code: 1161002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

(2) Each question carries 14 marks.

1 Answer any seven questions:

 $7 \times 2 = 14$

- (i) Define Countable set and give an example of a countable set.
- (ii) Define Boolean algebra on a non-empty set X.
- (iii) Define Borel field and Borel Set.
- (iv) Define Outer measure and give an example of an infinite subset of \mathbb{R} whose outer measure is zero.
- (v) Give an example of a subset of nowhere dense set.
- (vi) Prove or disprove, \mathbb{R} is a measurable set.
- (vii) Write down outer measure of following. sets: Q, [2,5] and (-3,5).
- (viii) Is Cantor set measurable? Justify.
- (ix) Define almost everywhere property.
- (x) Define convergence in sense of measure.

2 Answer any two questions:

$$2 \times 7 = 14$$

(a) Let X be a non-empty set and a be a Boolean algebra on X. Let $A_i > \subseteq a$ be any sequence in a. Prove that there is a sequence $B_i >$ in a such that each a is a remutually disjoint, a is a in a and

$$\bigcup_{i=1}^{n} B_{1} = \bigcup_{i=1}^{n} A_{i}$$
, for each $n \in \mathbb{N}$.

- (b) Give an example of a Boolean algebra on N, which is not a σ -algebra on N. Justify your answer.
- (c) Let $F, E \in m$, where m is the collection of all measurable sets. Prove that $F \cup E \in m$.
- (d) Prove that the outer measure is translate invariant (i.e. $m^*(A) = m^*(A + y)$, $\forall y \in \mathbb{R}$).
- 3 Answer any one question:

$$1 \times 14 = 14$$

- (a) Construct a non-measurable subset of [0, 1].
- (b) Let f be a bounded function on a measurable set

E and m E <
$$\infty$$
. Prove that $\inf_{\psi \geq f} \int_{E} \psi \sup_{\phi \leq f} \int_{E} \phi$,

for all simple functions ϕ and ψ on E if and only if f is a measurable function.

- (c) State and Prove Vitali's Lemma.
- 4 Answer any two questions

$$2 \times 7 = 14$$

(a) Let $1 \le p < \infty$. If $f,g \in L^p[0, 1]$, the prove that $f + g \in L^p[0, 1]$ and $||f + g||_p \le ||f||_p + ||g||_p$, where

$$\|f\|_p = \left[\int_0^1 |f|^p\right]^{1/p}.$$

(b) Let f be a bounded measurable function on [a, b] and $F(x) = \int_{a}^{x} f(t)dt + F(a), \forall x \in [a, b]$. Prove that F'(X) = f(X) almost everywhere on [a, b].

- (c) Let $f:[0, 1] \to \mathbb{R}$ and f(0) = 0, $f(x) = x^2 \sin(1/x^2)$, $\forall \times E (0, 1]$. Prove that f is not a function of bounded variation on [0, 1].
- **5** Answer any two questions:

$$2 \times 7 = 14$$

- (a) State and prove Bounded Convergence Theorem.
- (b) State and prove Fatou's Lemma.
- (c) Let $\{f_n\}$ be a sequence of non-negative measurable functions such that $f_n \le f_{n+1}, \ \forall \ n \in \ \mathbb{N}$. Suppose

$$f_n(X) \rightarrow f(X), \ \forall x \in E. \text{ Prove that } \int_E f = \lim_{n \to \infty} \int_E f_n.$$

(d) Let $\{f_n\}$ be a sequence of non-negative measurable functions such that fn $f_n \leq f$, $\forall n \in \mathbb{N}$, where f is also a non-negative measurable function. Suppose

$$f_n(x) \to f(x), \forall x \in E$$
. Prove that $\int_E f = \lim_{n \to \infty} \int_E f_n$.